1- (MAT-W 2016-HL-Paper 2-Q10)-FUNCTIONS - ROOTS, DIFFERENTIATION, INTEGRATION

Let the function f be defined by $f(x) = \frac{2 - e^x}{2e^x - 1}$, $x \in D$.

- (a) Determine D, the largest possible domain of f. [2]
- (b) Show that the graph of f has three asymptotes and state their equations. [5]
- (c) Show that $f'(x) = -\frac{3e^x}{(2e^x 1)^2}$. [3]
- (d) Use your answers from parts (b) and (c) to justify that f has an inverse and state its domain. [4]
- (e) Find an expression for $f^{-1}(x)$. [4]
- (f) Consider the region R enclosed by the graph of y = f(x) and the axes. Find the volume of the solid obtained when R is rotated through 2π about the y-axis. [4]
- 2- (MAT-W 2016-HL-Paper 2-Q5)-FUNCTIONS ROOTS, GRAPHS

Consider the function f defined by $f(x) = 3x \arccos(x)$ where $-1 \le x \le 1$.

- (a) Sketch the graph of f indicating clearly any intercepts with the axes and the coordinates of any local maximum or minimum points. [3]
- (b) State the range of f. [2]
- (c) Solve the inequality $|3x \arccos(x)| > 1$. [4]

1

www.EducaionHouse.com.my

3- (MAT-S 2016-HL-Paper 2/1-Q11)-FUNCTIONS - ROOTS

Let
$$f(x) = x^4 + 0.2x^3 - 5.8x^2 - x + 4, x \in \mathbb{R}$$
.

- (a) Find the solutions of f(x) > 0. [3]
- (b) For the curve y = f(x).
 - (i) Find the coordinates of both local minimum points.
 - (ii) Find the x-coordinates of the points of inflexion. [5]

The domain of f is now restricted to [0, a].

- (c) (i) Write down the largest value of a for which f has an inverse. Give your answer correct to 3 significant figures.
 - (ii) For this value of a sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the same set of axes, showing clearly the coordinates of the end points of each curve.
 - (iii) Solve $f^{-1}(x) = 1$. [6]

Let
$$g(x) = 2\sin(x-1) - 3$$
, $-\frac{\pi}{2} + 1 \le x \le \frac{\pi}{2} + 1$.

- (d) (i) Find an expression for $g^{-1}(x)$, stating the domain.
 - (ii) Solve $(f^{-1} \circ g)(x) < 1$. [8]

www.EducationHouse.com.inv

4- (MAT-S 2016-HL-Paper 2/2-Q5)-FUNCTIONS - ROOTS

[Maximum mark: 6]

The function
$$f$$
 is defined as $f(x) = \sqrt{\frac{1-x}{1+x}}$, $-1 < x \le 1$.

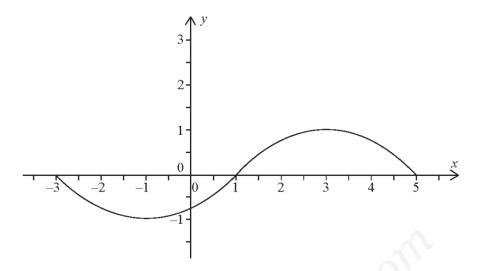
Find the inverse function, f^{-1} stating its domain and range.

COM.MY

www.Education

5- (MAT-S 2016-HL-Paper 2/1-Q2)-FUNCTIONS - ROOTS, QUADRATICS

(a) Express $x^2 + 4x - 2$ in the form $(x + a)^2 + b$ where $a, b \in \mathbb{Z}$. [2]


(b) If f(x) = x + 2 and $(g \circ f)(x) = x^2 + 4x - 2$ write down g(x). [2]

unun Educaion House com, my

6- (MAT-W 2015-HL-Paper 2-Q12)-FUNCTIONS - ROOTS

The following graph represents a function y = f(x), where $-3 \le x \le 5$.

The function has a maximum at (3, 1) and a minimum at (-1, -1).

- (a) The functions u and v are defined as u(x) = x 3, v(x) = 2x where $x \in \mathbb{R}$.
 - (i) State the range of the function $u \circ f$.
 - (ii) State the range of the function $u \circ v \circ f$.
 - (iii) Find the largest possible domain of the function $f \circ v \circ u$.
- (b) (i) Explain why f does not have an inverse.
 - (ii) The domain of f is restricted to define a function g so that it has an inverse g^{-1} . State the largest possible domain of g.
 - (iii) Sketch a graph of $y = g^{-1}(x)$, showing clearly the *y*-intercept and stating the coordinates of the endpoints. [6]

Consider the function defined by $h(x) = \frac{2x-5}{x+d}$, $x \neq -d$ and $d \in \mathbb{R}$.

- (c) (i) Find an expression for the inverse function $h^{-1}(x)$.
 - (ii) Find the value of d such that h is a self-inverse function.

For this value of d, there is a function k such that $h \circ k(x) = \frac{2x}{x+1}$, $x \neq -1$.

(iii) Find k(x).

offors con in

[7]

nnni

7- (MAT-S 2015-HL-Paper 2/1-Q10)-FUNCTIONS - ROOTS

A function f is defined by f(x) = (x+1)(x-1)(x-5), $x \in \mathbb{R}$.

(a) Find the values of x for which f(x) < |f(x)|. [3]

A function g is defined by $g(x) = x^2 + x - 6$, $x \in \mathbb{R}$.

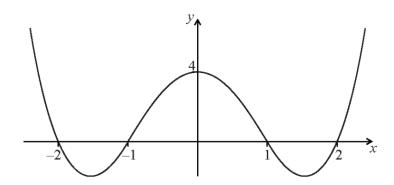
(b) Find the values of x for which $g(x) < \frac{1}{g(x)}$. [7]

COM.MY

www.Educatio.

8- (MAT-S 2015-HL-Paper 2/2-Q3)-FUNCTIONS - ROOTS, GRAPHS

(a) Sketch the graph of $y = (x-5)^2 - 2|x-5| - 9$, for $0 \le x \le 10$. [3]


(b) Hence, or otherwise, solve the equation $(x-5)^2-2|x-5|-9=0$. [2]

JU.WA

9- (MAT-S 2014-HL-Paper 2/1-Q12)-FUNCTIONS - ROOTS, GRAPHS

Let
$$f(x) = |x| - 1$$
.

(a) The graph of y = g(x) is drawn below.

- (i) Find the value of $(f \circ g)(1)$.
- (ii) Find the value of $(f \circ g \circ g)(1)$.

(iii) Sketch the graph of
$$y = (f \circ g)(x)$$
. [5]

(b) (i) Sketch the graph of y = f(x).

(ii) State the zeros of
$$f$$
. [3]

(c) (i) Sketch the graph of $y = (f \circ f)(x)$.

(ii) State the zeros of
$$f \circ f$$
. [3]

unun Eduraior House Comina

9- (MAT-S 2014-HL-Paper 2/1-Q12)-FUNCTIONS - ROOTS, GRAPHS

- (d) Given that we can denote $\underbrace{f \circ f \circ f \circ \dots \circ f}_{n \text{ times}}$ as f^n ,
 - (i) find the zeros of f^3 ;
 - (ii) find the zeros of f^4 ;
 - (iii) deduce the zeros of f^8 . [3]
- (e) The zeros of f^{2n} are a_1 , a_2 , a_3 , ..., a_N .
 - (i) State the relation between n and N;
 - (ii) Find, and simplify, an expression for $\sum_{r=1}^{N} |a_r|$ in terms of n. [4]

$10\hbox{--} (\text{MAT-S 2014-HL-Paper 2/1-Q10}) \hbox{--} \textit{FUNCTIONS - ROOTS, DIFFERENTIATION}$

Let
$$f(x) = \frac{e^{2x} + 1}{e^x - 2}$$
.

- (a) Find the equations of the horizontal and vertical asymptotes of the curve y = f(x). [4]
- (b) (i) Find f'(x).
 - (ii) Show that the curve has exactly one point where its tangent is horizontal.
 - (iii) Find the coordinates of this point.

- [8]
- (c) Find the equation of L_1 , the normal to the curve at the point where it crosses the y-axis. [4]

The line L_2 is parallel to L_1 and tangent to the curve y = f(x).

(d) Find the equation of the line L_2 .

[5]

www.EducaionHouse.com.my

11- (MAT-S 2014-HL-Paper 2/2-Q7)-FUNCTIONS - ROOTS, GRAPHS

The function f is defined as $f(x) = -3 + \frac{1}{x-2}$, $x \ne 2$.

- (a) (i) Sketch the graph of y = f(x), clearly indicating any asymptotes and axes intercepts.
 - (ii) Write down the equations of any asymptotes and the coordinates of any axes intercepts. [4]

(b) Find the inverse function f^{-1} , stating its domain.

[4]

, e.com.my

www.Edv

12- (MAT-W 2013-HL-Paper 2-Q13)-FUNCTIONS - ROOTS, EXPONENTIALS - LOGARITHMS, INTEGRATION

A function f is defined by $f(x) = \frac{1}{2} (e^x + e^{-x}), x \in \mathbb{R}$.

- (a) (i) Explain why the inverse function f^{-1} does not exist.
 - (ii) Show that the equation of the normal to the curve at the point P where $x = \ln 3$ is given by $9x + 12y 9\ln 3 20 = 0$.
 - (iii) Find the x-coordinates of the points Q and R on the curve such that the tangents at Q and R pass through (0, 0). [14]
- (b) The domain of f is now restricted to $x \ge 0$.
 - (i) Find an expression for $f^{-1}(x)$.
 - (ii) Find the volume generated when the region bounded by the curve y = f(x) and the lines x = 0 and y = 5 is rotated through an angle of 2π radians about the y-axis.

www.EducaionHouse.com.my

13- (MAT-S 2012-HL-Paper 2/1-Q6)-FUNCTIONS - ROOTS

[Maximum mark: 5]

Let $f(x) = \ln x$. The graph of f is transformed into the graph of the function g by a translation of $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$, followed by a reflection in the x-axis. Find an expression for g(x), giving your answer as a single logarithm.

	 · · · · · · · · · · · · · · · · · · ·	

unun Education House Com K